VMware NSX Advanced **Threat Prevention**

At a glance

VMware's NSX Advanced Threat Prevention (ATP) provides network security capabilities that protect organizations against advanced threats. NSX ATP combines multiple detection technologies - Intrusion Detection/Prevention System (IDS/IPS), Network Sandboxing, and Network Traffic Analysis (NTA) - with aggregation, correlation, and context engines from Network Detection and Response (NDR). These capabilities complement each other to provide a cohesive defensive layer. As a result, ATP increases detection fidelity, reduces false positives, and accelerates remediation while decreasing security analysts' manual work.

Key capabilities

IDS/IPS IDS/IPS This technology inspects all traffic that enters or leaves the network, detecting and preventing known threats from gaining access to the network, critical systems, and data. IDS/IPS looks for known malicious traffic patterns to hunt for attacks in the traffic flow. When it finds such attacks, it generates alerts for use by security analysts. Alerts are also logged for post-incident investigation.

NTA This technology looks at network traffic and traffic flow records using machine learning (ML) algorithms and advanced statistical techniques to develop a baseline of everyday activities. NTA can identify protocol, traffic, and host anomalies as they appear. Of course, not all anomalies represent threats; that's why VMware's NTA implements additional ML and rule-based techniques to determine if the anomaly is malicious. This analysis pipeline keeps false positives to a minimum, reducing the security team's work so the team can focus on real issues.

Network Sandbox This is a secure isolation

environment that detects

malicious artifacts. It analyzes the behavior of objects, such as files and URLs, to determine if they are benign or malicious. Because it does not rely on signatures, the sandbox can detect novel and highly targeted malware that has never been seen before.

NDR

NDR consists of aggregation, correlation, and context engines. The aggregation engine collects signals from individual detection technologies. It combines them to reach a verdict (malicious or benign) on network activities. The correlation engines combine multiple related alerts into an "intrusion campaign." The context engines collect data from various sources (including sources outside NSX) to add helpful context to the information provided to security analysts.

KEY BENEFITS

- Efficient Operation: ATP combines multiple related alerts, across many different assets and hops, into a single intrusion campaign view. This view enables the incident response team to quickly understand the scope of the threat and prioritize its response. Further, the information ATP provides allows security teams to proactively hunt for network threats. Finally, the solution reduces false positives.
- High-Fidelity Detection: ATP detects not only known threats but new, evolving threats that have never been seen before. It is engineered to detect malware specifically designed to evade standard security tools. ATP detects threats by analyzing local network traffic behavior and importing and utilizing indicators of malicious behavior from the VMware global threat intelligence network (VMware Contexa).
- Comprehensive Visibility: ATP has complete visibility into both northsouth and east-west traffic. Thus, ATP provides a comprehensive overview of abnormal behavior across the network. It also extends protection to all assets in the infrastructure, including those devices that do not have endpoint protection installed, such as physical servers with legacy workloads.

LEARN MORE

Check out these resources to learn more about protecting your ecosystem with the NSX Security portfolio. Reach out to your VMware Sales Representative for further details.

Further reading:

VMware NSX Gateway Firewall VMware NSX Distributed Firewall VMware Contexa

Network security use cases¹

- Virtual Patching: Proactively protect vulnerable workloads using distributed IDS/ IPS, allowing security teams time to plan and deploy patches to workloads.
- Advanced Malware Detection: Utilize a full system emulation network sandbox to detect and block sophisticated malware as it enters the infrastructure.
- Anomaly Detection: Provide NTA data collection points on all workloads without requiring SPAN or TAP ports. Enable real-time intelligence on anomalous activities as such activity moves laterally across the infrastructure.
- Intrusion Campaign Detection: Enable the security team to visualize attack chains by using the NDR to condense massive amounts of network data into a handful of intrusions along with contextual information. Correlate security events (suspicious objects and anomalous network flows) to automatically connect the dots for the security team.

Deployment flexibility

ATP is available as an add-on to the NSX Distributed Firewall and the NSX Gateway Firewall. ATP is also available as a standalone product - NSX ATP²- that does not require the deployment of either firewall. The table below presents a view of the NSX Security portfolio and ATP's role in it.

Capabilities	East-west Firewall	Edge Firewall	No Firewall	
Access control ³	NSX Distributed Firewall	NSX Gateway Firewall		
IDS/IPS	NSX Distributed Firewall with ATP		NSX ATP (standalone)	
Network Sandboxing		NSX Gateway		
NTA		Firewall with ATP		
NDR				

NSX Distributed Firewall with ATP and NSX Gateway Firewall with ATP are managed via the NSX Manager console. NSX ATP (standalone) has a dedicated console and is not managed via the NSX Manager.

¹ Some use cases may require a specific ATP deployment option.

² NSX ATP (standalone) was previously referred to as NSX NDR (standalone) and NSX Defender.

³ See "Internal Firewalls (VMware Special Edition)" for definitions of access control, traffic types, and firewall types.

Additional capabilities of NSX ATP (standalone)

NSX ATP (standalone) is desirable when the Distributed Firewall and Gateway Firewall are not applicable. Such a situation typically arises in an IT environment with non-vSphere workloads.

- Workflows for senior security operations center (SOC) staff to hunt for threats in the network. These workflows enable both visualization-based and metadatabased threat hunting
- The ability to share low-level analysis artifacts, including malware activities, mapped to the MITRE ATT&CK framework
- The ability to submit objects manually and via an API to the Network Sandbox
- The ability to query threat intelligence included in VMware Contexa
- The ability to define customized analysis rules
- Robust and comprehensive integrations with third-party Security Information and Event Management (SIEM) and Security Orchestration, Automation, and Response (SOAR) tools commonly used in SOCs

Minimum hardware configuration for NSX ATP (standalone)

The table below summarizes the minimum resource envelope required for the successful operation of NSX ATP (standalone):

Role	Manager	Data node	Engine	Sensor-1G	Sensor-10G	
Server model	Dell PowerEdge R450					
CPU type	Intel® Xeon® Silver 4314					
CPU quantity	1	1	1	1	2	
RAM	96GB	96GB	128GB	64GB	192GB	
RAID controller	Dell EMC PowerEdge RAID Controller (PERC) H745/H755 (with flash-backed cache)					
RAID configuration	RAID 10	RAID 10	RAID 1	RAID 1	RAID 1	
Persistent storage	4 × 4 TB HDDs	4 × 2 TB HDDs	2 × 1 TB HDDs	2 × 1 TB HDDs	2 × 1 TB HDDs	
Additional network card	None	None	None	Intel i350 Quad Port 1GbE	Intel X710 Dual Port 10GbE	

With the above configuration, security teams can expect performance as documented in the table below (performance varies with network traffic profile, server configuration, object/file type, and object/file size):

Network traffic (Gbps)	Up to 1 (4), depending on the sensor type
Objects per day	Up to 100,000
Files analyzed per day	Up to 10,000
Engine scalability	Up to 30 engines/manager
Sensor scalability	Up to 100 sensors/manager
Total endpoints protected	Up to 200,000 endpoints/manager

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 vmware.com Copyright © 2023 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at vmware.com/go/patents. VMware is a registered trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. Item No: VMware NSX Advanced Threat Prevention_JR4 02/23